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Phase transition in a traffic model with passing

I. Ispolatov1 and P. L. Krapivsky2
1Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853

2Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
~Received 3 February 2000!

We investigate a traffic model in which cars either move freely with quenched intrinsic velocities or belong
to clusters formed behind slower cars. In each cluster, the next-to-leading car is allowed to pass and resume
free motion. The model undergoes a phase transition from a disordered phase for the high passing rate to a
jammed phase for the low rate. In the disordered phase, the cluster size distribution decays exponentially in the
large size limit. In the jammed phase, the distribution of finite clusters is independent on the passing rate, but
it accounts only for a fraction of all cars; the ‘‘excessive’’ cars form an infinite cluster moving with the
smallest velocity. Mean-field equations, describing the model in the framework of Maxwell approximation,
correctly predict the existence of phase transition and adequately describe the disordered phase; properties of
the jammed phase are studied numerically.

PACS number~s!: 02.50.2r, 05.40.2a, 89.40.1k, 05.20.Dd
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I. INTRODUCTION

Traffic flows on single-lane roads with no passing exhi
clustering since queues of fast cars accumulate behind
cars. These clusters form and grow even when car densi
small. The initial analysis of cluster formation was carri
out in the earlier days of traffic theory@1#, and this subject
continued growing ever then@2–9#. If passing is introduced
the clusters may stop growing after reaching a certain s
Indeed, previous work@10–12# indicated that after a tran
sient regime a steady state is reached. The models of R
@10–12# assume thatanycar in a cluster can pass the leadi
car and the passing rate is independent on the location o
car within the cluster. This is certainly an oversimplificatio
of the everyday traffic scenarios. The complementary c
when only the next-to-leading cars can pass is also an
alization, yet it is closer to reality. Below we show that t
latter model is also richer phenomenologically as it und
goes a dynamical phase transition.

We first comment on possible theoretical approaches
mean-field theory is the primary candidate, and we beli
that it may be very good, perhaps even exact, since clus
ing and passing mix positions and velocities of the cars. T
Boltzmann equation approach is an appropriate mean-
scheme, and in our earlier work@10,11# we indeed used it.
However, the present model, where only the next-to-lead
car is allowed to pass, is significantly more difficult than t
model @10,11# where passing was possible for all cars. I
deed, it appears impossible even to write down closed B
zmann equations for the distribution functions such
P(v,t) andPm(v,t), the density of all clusters moving with
velocity v, and the density of clusters ofm cars, respectively
Therefore our theoretical analysis is performed in the fram
work of the Maxwell approach. This scheme simplifies ‘‘co
lision’’ terms by replacing the actual collision rates, whic
are proportional to velocity difference of collision partne
PRE 621063-651X/2000/62~5!/5935~5!/$15.00
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by constants. Despite this essentially uncontrolled appro
mation, the Maxwell approximation is very popular in k
netic theory@13# and it has already been used in traffic@12#.

The important feature of our model isquenched disorder,
which manifests itself in the random assignment of intrin
velocities. Road conditions~construction zones, turns, hills
etc.! present another source of quenched randomness in
driving situations @14#, which is ignored in our model
Quenched disorder significantly affects characteristics
many-particle systems, especially in low spatial dimensio
@15#. This general conclusion applies to the present o
dimensional traffic model as we shall show below.

II. MAXWELL APPROXIMATION

We now formally define the model. Free cars move w
quenchedintrinsic velocities randomly assigned from som
distribution P0(v). When a car or a cluster encounters
slower one, it assumes its velocity and a larger cluste
formed. In every cluster, the next-to-leading car is allowed
pass and resume driving with its intrinsic velocity. The ra
of passing is assumed to be a constant. Thus clusters m
and aggregate deterministically, while passing is stocha
The system is initialized by randomly placing single cars a
assigning them uncorrelated intrinsic velocities.

Within the Maxwell approach, the joint size-velocity dis
tribution function~the density of clusters of sizem moving
with velocity v) Pm(v,t) obeys

]Pm~v,t !

]t
5g~12dm,1!@Pm11~v,t !2Pm~v,t !#

1gdm,1@N~v,t !1P2~v,t !#2c~ t !Pm~v,t !

1E
v

`

dv8 (
i 1 j 5m

Pi~v8,t !Pj~v,t !. ~1!
5935 ©2000 The American Physical Society
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5936 PRE 62I. ISPOLATOV AND P. L. KRAPIVSKY
Hereg is the passing rate, so terms proportional tog account
for escape, while the rest describes clustering. The es
terms are the same within Boltzmann and Maxwell a
proaches, and they are actuallyexact. The collision terms are
mean-field by nature, and they are different in the Boltzma
and Maxwell approaches. For instance, in the Boltzma
case, the integral term must involvev82v. Eqs. ~1! also
containc(t), the total cluster density

c~ t !5(
j >1

E
0

`

dv Pj~v,t !, ~2!

and N(v,t), the density of clusters in which the next-to
leading car has intrinsic velocityv. This N(v,t) causes the
major trouble since it cannot be expressed throughPj (v,t).
One might try to close Eqs.~1! by introducingFk(v,v8,t),
the density of clusters moving with the velocityv8 whose
kth car has intrinsic velocity v. Clearly, N(v,t)
5*0

vdv8F2(v,v8,t), and it appears that equations f
Fk(v,v8,t) are closed. A more careful look, however, r
veals that the governing equation forF2(v,v8,t) includes
three-velocity correlators.

Thus, at the first sight, the Boltzmann and Maxwell a
proaches appear to be equally incapable of providing clo
equations for the joint size-velocity distribution functio
Still, the Maxwell framework has an advantage that it do
provide a closed description on the level of the cluster s
distribution. Indeed, integrating Eqs.~1! over velocity and
definingPm(t)[*0

`dv Pm(v,t), we find that the cluster size
distributionPm(t) obeys

dPm

dt
5g@Pm112Pm#2c Pm1

1

2 (
i 1 j 5m

Pi Pj ~3!

for m>2, and

dP1

dt
5g@P22P11c#2c P1 . ~4!

In addition to this formal derivation of Eqs.~3!–~4! by direct
integration of Eqs.~1!, it is possible to obtain these equatio
by enumerating all possible ways in which clusters evol
For instance, consider Eq.~4!. Collisions reduce the densit
of single cars, and the collision rate is clearly equal toc(t),
as it is velocity-independent in the framework of the Ma
well approach. The escape term in Eq.~4! is understood by
observing that the rate of return of single cars into the sys
is equal to

gF2P21(
j >3

Pj G5g@P22P11c#.

HereP2(t) is singled out since passing transforms it into tw
single cars while an escape from larger clusters produ
only one freely moving car.

Equations~3!,~4! are closed. Mathematically similar equ
tions were investigated previously in the context of t
aggregation-fragmentation model@16,17#. Therefore, we
merely present essential steps of the analysis. Restric
ourselves to the steady state and introducing notationsPm
5gFm , c`5gF, we recast Eqs.~3!,~4! into
pe
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FFm5Fm112Fm1dm,1F1
1

2 (
i 1 j 5m

FiF j . ~5!

These equations should be solved together with the c
straints(m>1Pm5c` and(m>1mPm51, i.e.,

(
m>1

Fm5F, (
m>1

mFm5g21. ~6!

Note that the sum(m>1mPm(t) is obviously constant due to
car conservation. The constant is equal to the initial conc
tration c0 as cars were initially unclustered. Here and belo
we always choosec051.

As in Ref. @16#, we introduce the generating function

F~z!5 (
m>1

~zm21!Fm . ~7!

This generating function obeys

1

2
F 21

12z

z
F1

~12z!2

z
F50, ~8!

with the solution

F~z!5
z21

z
$12A122zF%. ~9!

The steady state solution~9! exists only when the generatin
function is real for all the 0<z<1. Hence, we require tha
2F<1. Assuming that this condition is satisfied, we expa
the generating function in the powers ofz to obtain the
steady state concentrations

Fm5
~2F !m

2Ap
H G~m21/2!

G~m11!
22F

G~m11/2!

G~m12! J . ~10!

This solution is still incomplete as we have not yet det
minedF. To find F we use the sum rules~6!. The first sum
rule is manifestly obeyed, while the second sum rule yie
(mFm5dF/dzuz51512A122F5g21. Thus, F5(2g
21)/2g2, which translates intoc`5121/2g.

The steady state solution~10! exists for sufficiently high
passing rates,g>gc51. For g.1 and largem, the steady
state size distribution simplifies to

Pm.Cm23/2@12~12g21!2#m, ~11!

with C5(4p)21/2g21(g21)2. Apart from a power-law
prefactor, the size distribution exhibits an exponential de
Pm;e2m/m* , in the large size limit. The characteristic siz
diverges,m* ;(g21)22 as the passing rate approaches
critical valuegc51. In the critical case, the size distributio
has a power-law form

Fm5
3

4Ap

G~m21/2!

G~m12!
;m25/2. ~12!

Let now the passing rate drop below the critical val
(g,gc). SinceF cannot grow beyondFc51/2, it stays con-
stant. Therefore,Fm is given by the same Eq.~12! as in the
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PRE 62 5937PHASE TRANSITION IN A TRAFFIC MODEL WITH PASSING
critical case, and the cluster size distribution readsPm
5gFm . This impliesc`5g/2, i.e., the sum rule(Pm5c` is
valid. The second sum rule is formally violated:(mPm5g
Þ1, i.e., the cluster size distribution~12! accounts only for
the fraction of all the cars present in the system. The o
possible explanation is the formation of an infinite clus
that contains all the excessive cars. The second sum rule
shows that 12g of all the cars in the system are in th
infinite cluster.

Thus within the framework of the Maxwell approxima
tion, our traffic model displays a phase transition whi
separates the disordered and jammed phases. The s
state cluster concentration has different dependence on
passing rate for these two phases:

c`5H 121/2g, g.1,

g/2, g,1.
~13!

In the disordered phase, the size distribution decays ex
nentially in the large size limit. In the jammed phase,Pm has
a power law tail and in addition there is an infinite clus
which contains the following fraction of cars:

I 5H 0, g.1,

12g, g,1.
~14!

This phase transition is similar to phase transitions in driv
diffusive systemswithoutpassing@4–7,9# and to phase tran
sitions in aggregation-fragmentation models@16–18#. Also,
the mechanism of the formation of the infinite cluster ha
strong formal analogy to Bose-Einstein condensation@6,17#.

Turning back to the joint size-velocity distribution~1!, we
note that the lack of anexactexpression forN(v) in terms of
Pm(v) does not mean the lack of a mean-field relation
tween these quantities. Indeed, the densityN(v) of clusters
in which the next-to-leading car has intrinsic velocityv, can
be written as

N~v !5E
0

v
dv8 (

j >2
Pj~v8!

C~v !

E
v8

`

dv9 C~v9!

. ~15!

Here ( j >2Pj (v8) is the density of ‘‘true’’ clusters~i.e.,
freely moving cars are excluded! moving with velocityv8.
Then,C(v)5P0(v)2P(v) is the density of cars with intrin-
sic velocityv which are currently slowed down, i.e., they a
neither single cars, nor cluster leaders. Assuming that
velocities of cars inside clusters are perfectly mixe
C(v)/*v8

` dv9 C(v9) gives the probability density that th
next-to-leading car in a truev8-cluster has the velocityv.
The product form of Eq.~15! reveals its mean-field nature
which is consistent with the spirit of our theoretical a
proach. One can verify that Eq.~15! agrees with the sum rule
*dv N(v)5( j >2Pj , thus providing a useful check of sel
consistency.

Although Eqs.~1! with N(v) given by Eq.~15! seem very
complex even in the steady-state regime, several conclus
can be derived without getting their complete solution. W
first simplify Eqs.~1! by introducing auxiliary functions
ly
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Qm~v !5E
v

`

dv8 Pm~v8!. ~16!

By inserting Pm52dQm /dv into the Eqs.~1!, integrating
resulting equations overv, and using the boundary cond
tions Qm(v5`)50, we find

g@Qm11~v !2Qm~v !#2c Qm~v !1
1

2 (
i 1 j 5m

Qi~v !Qj~v !

5dm1 g q~v !, ~17!

with

q~v !52Q1~v !2E
v

`

dv8 N~v8!. ~18!

Equations~17! are almost identical to the Eqs.~3!,~4!, the
velocity is just a parameter. Consequently, we anticip
qualitatively similar results,Qm(v);m23/2e2m/m* , and

Pm~v !;m21/2e2m/m* , ~19!

with the characteristic sizem* (v,g) dependent on both ve
locity and passing rate. Our more rigorous generating fu
tion analysis, performed along the lines described abo
confirms the asymptotic form~19!.

III. SIMULATIONS

Now let us examine what conclusions obtained within t
Maxwell approach are relevant for the original model. W
first rederive the condition for the phase transition in t
complete velocity-dependent form. Let us consider a sys
of reference with the origin moving with the slowest car. W
assume that the system is sufficiently large for the slow
car to have negligible velocity. We compare the total flux
cars clustering behind this slowest car,(mPm^v&m , to the
rate of escape,g. Here ^v&m is an average velocity of a
cluster of sizem. When the rate of escape becomes less t
the rate of accumulation of the cars, the cluster behind
slowest car~analog of the ‘‘infinite cluster’’ for finite sys-
tems! grows to remove the excessive cars from the syst
Hence, the phase transition pointg̃c is defined as

(
m>1

mPm^v&m5g̃c . ~20!

For the Maxwell model, wherêv&m51 for all m, Eq. ~20!
reduces to(mPm5gc51 as obtained above. Since larg
clusters usually form behind slow cars,^v&m is a decreasing
function of the cluster sizem. In particular,^v&m is always
smaller than the average car velocity^v&, implying g̃c,1.

For a rough estimate of^v&m , consider a cluster ofm cars
andassumethat intrinsic velocities of the cars in the clust
are independent. The leading car has the minimal velocity
the size-velocity distribution reads

Pm~v !'mP0~v !F E
v

`

dv8 P0~v8!Gm21

Pm . ~21!
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For concreteness, let us consider intrinsic velocity distri
tions which behave algebraically near the lower cuto
P0(v);vm asv→0. Then for large clusters we get

Pm~v !;Pm exp~2mvm11!. ~22!

This implies that the average cluster velocity^v&m scales
with m according to ^v&m;m21/(m11), and hence g̃c
;(mm/(m11)Pm . We conclude that the phase transition do
exist in the original model, although its location is shifte
towards lower passing rate compared to the Maxwell mo
prediction. This shift is especially significant for smallm
(m.21 from the normalization requirement!.

To check the relevance of other predictions of the Ma
well approach, we performed molecular dynamics simu
tions. We placeN520 000 single cars onto the ring of leng
L5N, so that the average car density is equal to one. In
positions and velocities of cars were assigned randomly.
considered linearP0(v)5 8

9 v (0,v,3/2), exponential
P0(v)5e2v, andP0(v)5(2pv)21/2e2v/2 velocity distribu-
tions, which correspond tom51,0,21/2 for the small-v as-
ymptotics. All these three distributions have the average
locity equal to one.

In Fig. 1, we plot ln@m3/2Pm# vs m for the above three
velocity distributions. We takeg51 which, as we concluded
before, lies above the phase transition pointg̃c . We expect
the system to be in the disordered phase withPm being ex-
pressed by Eq.~11!. For the exponential andP0(v)
5(2pv)21/2e2v/2 intrinsic velocity distributions, there is a
good agreement with the prediction of the Maxwell mod
~11!; for the linear velocity distribution, there are some d
viations for smallm, but for largem the agreement is satis
factory. The slopes of the plots decrease withm. Taking into
account that at the point of the phase transition the sl
equals to zero, this qualitatively confirms thatg̃c gets smaller
whenm decreases.

Plots of Pm vs m for intrinsic velocity distributions
P0(v)5e2v and P0(v)5(2pv)21/2e2v/2, with passing rate
g50.005 well below the phase transition point, are shown
Figs. 2~a! and 2~b!, respectively. The cluster size distributio
clearly consists of two regions: almost power-law tail f

FIG. 1. Plot of ln@m3/2Pm# vs cluster sizem in the high passing
rate regime (g51) for linear (h), exponential~s!, and P0(v)
5(2pv)21/2e2v/2 (¹) initial velocity distributions.
-
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smaller m and several separate peaks for largerm. These
peaks correspond to the fluctuating size of the infinite cl
ter, while the power-law tail describes the regular part
Pm . The apparent exponentt of the power-law regionPm
;m2t slightly varies for different passing rates andP0(v),
though it remains confined between 3/2 and 2. It is definit
different form the value 5/2, predicted by the Maxwell mod
~12!. The measured values oft would make the total amoun
of cars in the system divergent,(mPm→`, so the power-
law region ends with an exponential cutoff at largem.

We now comment on the relationship of our model
earlier work. Phenomenologically, it has certain resembla
to clogging of granular flow in narrow pipes~see, for ex-
ample, Ref.@19#!. On the level of the mean-field descriptio
of clustering, our model is similar to the models of Re
@16,17#. On the level of a microscopic definition of the pro
cess, our model reminds us of an asymmetric conserv
mass aggregation model~ASCMAM! @17# where clusters un-
dergo asymmetric diffusion, aggregation upon contact,
chipping~single-particle dissociation!. Of course, our mode
is continuum while the ASCMAM is the lattice model. Mor
substantial difference between the two models lies in
nature of randomness — in our model intrinsic velocities

FIG. 2. ~a! Plot of the steady state cluster size distributionPm in
the low passing rate regime (g50.005) for the exponential initial
velocity distribution.~b! Plot of the steady state cluster size dist
bution Pm in the low passing rate regime (g50.005) for the
P0(v)5(2pv)21/2e2v/2 initial velocity distribution.
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quenched random variables, while in the ASCMAM dyna
ics is the only source of randomness. Nevertheless, the
nomenology of the two models appears to be quite similar
particular, the ASCMAM undergoes a phase transition, a
in the jammed phase, the cluster size distribution exhibi
power law decay with the exponent close to 2@17#. We
should stress that in the jammed phase, we have not rea
a scale-free critical state which must have the exponent
>2. Maybe quenched randomness does not allow the sys
to organize itself into a truly normalizable critical stat
Other possible explanation relies on large fluctuations in
ordered systems, i.e., our system was not large enoug
ensure self-averaging.

IV. CONCLUSION

In this paper, we have investigated the model of tra
that involves clustering and passing of the next-to-lead
car. Despite the fact that it is one of the simplest~if not the
simplest! possible continuous model of one-lane traffic w
passing, the model has rich kinetic behavior. Depending
the passing rateg the system organizes itself either into di
ordered phase where density of large clusters is expo
tially suppressed, or into the jammed phase, where the c
ter size distribution becomes independent ong and the
infinite cluster is formed. Within the framework of Maxwe
approach, which plays the role of the mean-field theory
the present context, we have shown that the model admit
analytical solution. We have argued that the Maxwell a
proach correctly predicts the existence of the phase trans
and adequately describes the properties of the disord
phase which arises when the passing rate is high. For
jammed phase, the Maxwell approach correctly predicts
the system stores excessive cars in the infinite cluster
organizes itself into some kind of a critical state. Howev
the Maxwell approach cannot quantitatively describe ot
properties of the jammed phase. It would be interesting
. E
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design a more accurate theoretical approach which wo
allow us to probe the characteristics of the low passing r
regime analytically. Some properties of the jammed state
pear similar to the properties of the jammed state of a lat
model of Ref.@17# which includes an asymmetric lattice di
fusion, aggregation, and fragmentation. It would be intere
ing to gain a deeper understanding of the relationship
tween these models, and whether the quenched disord
the main source of difference.

Finally we would like to say a few words about the re
evance of our findings to everyday traffic flow. The stipu
tion that the only car allowed to pass is the one immediat
following the leading car indeed makes our model quite
alistic. We could hardly recall seeing successful simul
neous passing events taking place within one dense clu
similarly, a driver would seldom risk overtaking more than
few cars at once. In fact, our passing rule could be con
ered as the main consequence of the finite length of c
Other consequences of finite car size could be simply ta
into account by redefining car density, unless the traffic is
jammed that the average distance between cars beco
comparable to their length, and any passing is impossi
The occurrence of phase transition and formation of infin
cluster correspond to a rather common real driving scena
after sitting for a while in a big cluster and finally overtakin
its slow leader, one often drives rather unobstructed, since
the ‘‘excessive’’ cars are trapped in the big cluster left b
hind. Besides traffic flow, our model may also be relevant
other systems like pedestrian motion, where multiple age
move with intrinsic velocities and can not instantaneou
overtake the slower ones.
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