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Phase transition in a traffic model with passing
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We investigate a traffic model in which cars either move freely with quenched intrinsic velocities or belong
to clusters formed behind slower cars. In each cluster, the next-to-leading car is allowed to pass and resume
free motion. The model undergoes a phase transition from a disordered phase for the high passing rate to a
jammed phase for the low rate. In the disordered phase, the cluster size distribution decays exponentially in the
large size limit. In the jammed phase, the distribution of finite clusters is independent on the passing rate, but
it accounts only for a fraction of all cars; the “excessive” cars form an infinite cluster moving with the
smallest velocity. Mean-field equations, describing the model in the framework of Maxwell approximation,
correctly predict the existence of phase transition and adequately describe the disordered phase; properties of
the jammed phase are studied numerically.

PACS numbe(s): 02.50-r, 05.40—a, 89.40+Kk, 05.20.Dd

[. INTRODUCTION by constants. Despite this essentially uncontrolled approxi-
mation, the Maxwell approximation is very popular in ki-
Traffic flows on single-lane roads with no passing exhibitnetic theory{13] and it has already been used in traffl@].
clustering since queues of fast cars accumulate behind slow The important feature of our model ggienched disorder
cars. These clusters form and grow even when car density ihich manifests itself in the random assignment of intrinsic
small. The initial analysis of cluster formation was carriedVvelocities. Road conditiontconstruction zones, turns, hills,
out in the earlier days of traffic theofil], and this subject ©tc) present another source of quenched randomness in real
continued growing ever thei2—9]. If passing is introduced, driving situations[14], which is ignored in our model.
the clusters may stop growing after reaching a certain size2uenched disorder significantly affects characteristics of
Indeed, previous work10-12 indicated that after a tran- many-pa}rtmle systems, espeually n low spatial dimensions
sient regime a steady state is reached. The models of Re _5]' Tr_us genergl conclusion applies to the present one-
[10—12 assume thatnycar in a cluster can pass the leading imensional traffic model as we shall show below.
car and the passing rate is independent on the location of the
car within the cluster. This is certainly an oversimplification II. MAXWELL APPROXIMATION
of the everyday traffic scenarios. The complementary case i )
when only the next-to-leading cars can pass is also an ide- We now formally define the model. Free cars move with
alization, yet it is closer to reality. Below we show that the duénchedntrinsic velocities randomly assigned from some
latter model is also richer phenomenologically as it underdistribution Po(v). When a car or a cluster encounters a
goes a dynamical phase transition. slower one, it assumes its velocity anq a Iarg_er cluster is
We first comment on possible theoretical approaches. Aormed. In every cluster, the next-to-leading car is allowed to
mean-field theory is the primary candidate, and we believdass and resume driving with its intrinsic velocity. The rate
that it may be very good, perhaps even exact, since clusteff passing is assumed to be a constant. Thus clusters move
ing and passing mix positions and velocities of the cars. Th@nd aggregate deterministically, while passing is stochastic.
Boltzmann equation approach is an appropriate mean-fieldhe system is initialized by randomly placing single cars and
scheme, and in our earlier woft0,11] we indeed used it. @sSigning them uncorrelated intrinsic velocities.
However, the present model, where only the next-to-leading Within the Maxwell approach, the joint size-velocity dis-
car is allowed to pass, is significantly more difficult than thetribution function (the density of clusters of size moving
model[10,11] where passing was possible for all cars. In-With velocity v) Py(v,t) obeys
deed, it appears impossible even to write down closed Bolt-
zmann equations for the distribution functions such as 4P (v,t)

P(v,t) andPy(v,t), the density of all clusters moving with 5= (1= 0m2)[Pm+1(v,1) = Pry(v,1)]

velocityv, and the density of clusters of cars, respectively.

Therefore our theoretical analysis is performed in the frame- + YO N(v,t)+Py(v,t) ] c(t) Py(v,t)

work of the Maxwell approach. This scheme simplifies “col- .

lision” terms by replacing the actual collision rates, which +J' do’ E P.(v',t)P;i(u,1) 1)
) A . R AL ALV AL

are proportional to velocity difference of collision partners, v i+]=m

1063-651X/2000/6(5)/59355)/$15.00 PRE 62 5935 ©2000 The American Physical Society



5936 I. ISPOLATOV AND P. L. KRAPIVSKY PRE 62

Herey is the passing rate, so terms proportionaytaccount 1

for escape, while the rest describes clustering. The escape FFm=Fm+i1=Fmt omaF+ 35 > FiF;. )
terms are the same within Boltzmann and Maxwell ap- trem

proaches, and they are actuadiyact The collision terms aré  thege equations should be solved together with the con-
mean-field by nature, and they are different in the BOItzma”%traint52m>le=coc ands,-,mP.=1, i.e.,

and Maxwell approaches. For instance, in the Boltzmann B B
case, the integral term must involv€ —v. Egs. (1) also

containc(t), the total cluster density m§>:1 Fm=F, mZ:l mF,=7y"". (6)
c(t)y=>, fmdu Pi(v,1), 2 Note that the sunx, - ;mPy(t) is obviously constant due to
=1 Jo car conservation. The constant is equal to the initial concen-

) ) ) tration cy as cars were initially unclustered. Here and below
and N(v,t), the density of clusters in which the next-to- o always choose,=1

leading car has intrinsic velocity. This N(v,t) causes the
major trouble since it cannot be expressed throBgtv,t).
One might try to close Eqg1) by introducingF(v,v’,t),
the density of clusters moving with the velocity whose ]:(Z):mzl (Z"=DFp. @)
kth car has intrinsic velocity v. Clearly, N(v,t) -
=J[odv'Fy(v,v',t), and it appears that equations for This generating function obeys
Fi(v,v',t) are closed. A more careful look, however, re-
veals that the governing equation fr(v,v’,t) includes
three-velocity correlators.

Thus, at the first sight, the Boltzmann and Maxwell ap-
proaches appear to be equally incapable of providing closedith the solution
equations for the joint size-velocity distribution function. L
Still, the Maxwell framework has an advantage that it does _Z- -
provide a closed description on the level of the cluster size Az)=——{1-v1-2zF. ©
distribution. Indeed, integrating Eq§l) over velocity and . . .
defining P, (t) = f{dv P(v,t), we find that the cluster size The steady state solutigf) exists only when the generating

As in Ref.[16], we introduce the generating function

1 1-z 1-2)?
—]-"2+—]-'+( )
2 z

F=0, (8)

distribution P,(t) obeys function is real for all the &z=<1. Hence, we require that
2F=<1. Assuming that this condition is satisfied, we expand
dP,, 1 the generating function in the powers ofto obtain the
dr YPmi1=Pml=C Pyt 2 iﬂ.E:m PiP; ©) steady state concentrations
m _
for m=2. and m:(ZF) I'(m—1/2) B I'(m+1/2) @
2w | T(m+1) '(m+2)
dpP,
ar~ P2=Pitcl—cPy. (4)  This solution is still incomplete as we have not yet deter-

minedF. To find F we use the sum rule®). The first sum
In addition to this formal derivation of Eqé3)—(4) by direct ~ rule is manifestly obeyed, while the second sum rule yields
integration of Egs(1), it is possible to obtain these equations EmF,=dF/dz,_;=1-|1-2F= y~ 1. Thus, F=(2y
by enumerating all possible ways in which clusters evolve—1)/2y?, which translates intg..=1—1/2y.
For instance, consider E¢4). Collisions reduce the density ~ The steady state solutiad0) exists for sufficiently high
of single cars, and the collision rate is clearly equattt)y,  passing ratesy=y.=1. For y>1 and largem, the steady
as it is velocity-independent in the framework of the Max- state size distribution simplifies to
well approach. The escape term in E4) is understood by

~ -3/ _ _ A 1\2
observing that the rate of return of single cars into the system Prn=Cm 31— (1-y H", 11
's equal to with C=(47) Y2y~1(y—1)2. Apart from a power-law
prefactor, the size distribution exhibits an exponential decay
4 2P2+§3 Pij|=vP2—Pytc]. Pn~e ™™ in the large size limit. The characteristic size

diverges,m* ~ (y—1)"? as the passing rate approaches the

HereP,(t) is singled out since passing transforms it into two critical valuey.=1. In the critical case, the size distribution
single cars while an escape from larger clusters produce@s @ power-law form
only one freely moving car.

Equationq3),(4) are closed. Mathematically similar equa- = :i I'(m—1/2) —52 (12)
tions were investigated previously in the context of the m 47 T(m+2)
aggregation-fragmentation mod¢lL6,17. Therefore, we
merely present essential steps of the analysis. Restricting Let now the passing rate drop below the critical value
ourselves to the steady state and introducing notat®ps (y<1y.). SinceF cannot grow beyoné .= 1/2, it stays con-
=yFn, C.=yF, we recast Eq93),(4) into stant. ThereforeF,, is given by the same E@12) as in the
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critical case, and the cluster size distribution redels %
= yFm. This impliesc,,= y/2, i.e., the sum rul&P,=c.. is Qm(v):f dv’ Pp(v’). (16)
valid. The second sum rule is formally violatedmP,,=y !
#1, i.e., the cluster size distributioil2) accounts only for By inserting P,,= —dQ,,/dv into the Egs.(1), integrating

the f_raction of all .the cars present.in the system. The Orll3fesulting equations over, and using the boundary condi-
possible explanation is the formation of an infinite C|UStertionsQ (v=)=0, we find
m ’

that contains all the excessive cars. The second sum rule then

shows that *-+y of all the cars in the system are in this 1

infinite cluster. NQm+1(0) = Qu(v)] =€ Qulv)+ 5 2 Qi(v)Qj(v)
Thus within the framework of the Maxwell approxima- tHi=m

tion, our traffic model displays a phase transition which =61 vq(v), (17)

separates the disordered and jammed phases. The steady
state cluster concentration has different dependence on tRgth
passing rate for these two phases:

(1—1/27, y>1, q(v>=—Ql<v>—rdv’ N(v"). (18)
C,= v

vI2, y<l1. (13
Equations(17) are almost identical to the Eqg§3),(4), the
In the disordered phase, the size distribution decays expdelocity is just a parameter. Consequently, we anticipate
nentially in the large size limit. In the jammed phaBg, has  qualitatively similar resultst(v)~m‘3’2e‘m/m*, and
a power law tail and in addition there is an infinite cluster

which contains the following fraction of cars: P (v)~m™ Y2~ mm* (19
0, y>1, with the characteristic sizen* (v,y) dependent on both ve-
I= 1—y, y<1 (14 locity and passing rate. Our more rigorous generating func-

tion analysis, performed along the lines described above,

. e . . ._confirms the asymptotic forr(i9).
This phase transition is similar to phase transitions in driven ymp 9

diffusive systemswvithoutpassing4-7,9 and to phase tran-

sitions in aggregation-fragmentation modgl$-1§. Also, Ill. SIMULATIONS

the mechanism of the formation of the infinite cluster has a Now let us examine what conclusions obtained within the

strong formal analogy to Bose-Einstein condensaf@a7].  Maxwell approach are relevant for the original model. We
Turning back to the joint size-velocity distributié), we  first rederive the condition for the phase transition in the

note that the lack of aexactexpression foN(v) interms of  complete velocity-dependent form. Let us consider a system

Pm(v) does not mean the lack of a mean-field relation bef reference with the origin moving with the slowest car. We

tween these quantities. Indeed, the denbify) of clusters  assume that the system is sufficiently large for the slowest

in which the next-to-leading car has intrinsic velodgitycan  car to have negligible velocity. We compare the total flux of

be written as cars clustering behind this slowest camP(v)y,, to the
rate of escapey. Here(v), is an average velocity of a
v C(v) cluster of sizen. When the rate of escape becomes less than
N(v):f dv’ Z Pi(v') —— - (19 the rate of accumulation of the cars, the cluster behind the
0 =2 f dv" C(v") slowest car(analog of the “infinite cluster” for finite sys-
v

temg grows to remove the excessive cars from the system.

Here =,_,P,(v’) is the density of “true” clusters(i.e., Hence, the phase transition poipt is defined as

freely moving cars are excludedhoving with velocityv'.

Then,C(v) =Py(v) — P(v) is the density of cars with intrin- > MP(v)m= 7e- (20)
sic velocityv which are currently slowed down, i.e., they are m=1

neither single cars, nor cluster leaders. Assuming that the

velocities of cars inside clusters are perfectly mixed,FOr the Maxwell model, wherév),=1 for all m, Eq. (20)

C(v)/f* dv" C(v") gives the probability density that the reduces to=mP,= ye=1 as obtained ab_ove. Since I_arge
next-tofleading car in a true’-cluster has the velocity clusters usually form behind slow cafs,), is a decreasing
The product form of Eq(15) reveals its mean-field natu.re, function of the cluster sizen. In particular,{v)n |s~always
which is consistent with the spirit of our theoretical ap- Smaller than the average car velocity), implying y.<1.

proach. One can verify that E6L5) agrees with the sum rule ~ For arough estimate @b)r,, consider a cluster ofi cars
Jdv N(v)=3;=,P;, thus providing a useful check of self- andassumehat intrinsic velocities of the cars in the cluster

consistency. are independent. The leading car has the minimal velocity, so
Although Egs (1) with N(v) given by Eq.(15) seem very ~the size-velocity distribution reads

complex even in the steady-state regime, several conclusions

can b.e dgrived without _getting Fheir co.mplete so!ution. We Po(v)~mPo(v)

first simplify Egs.(1) by introducing auxiliary functions

m—1

jwdv' Po(v") Pm- (21
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FIG. 1. Plot of Ifm®?P,,] vs cluster sizem in the high passing
rate regime ¢=1) for linear (Q), exponential(O), and Py(v) 10°
=(2mv)~ Y% 72 (V) initial velocity distributions.

For concreteness, let us consider intrinsic velocity distribu- -2
. . - 10
tions which behave algebraically near the lower cutoff,
Po(v)~v#* asv—0. Then for large clusters we get

1 #10™
Po(v)~ Py exp—mo#th). (22) A
This implies that the average cluster velocity),, scales 10
with m according to (v)y~m Y**Y  and hence’y,
~>mH TP We conclude that the phase transition does
exist in the original model, although its location is shifted " . .
towards lower passing rate compared to the Maxwell model 10 1 10 100 1000

prediction. This shift is especially significant for smail (b) m

(u>—1 from the normalization requirement
To check the relevance of other predictions of the Max- FIG. 2. (a) Plot of the steady state cluster size distributiypin

well approach, we performed molecular dynamics simulathe low passing rate regimey( 0.005) for the exponential initial

tions. We placéd= 20 000 single cars onto the ring of length Vvelocity distribution.(b) Plot of the steady state cluster size distri-

L=N, so that the average car density is equal to one. Initiagpution Pr, in the low passing rate regimey¢0.005) for the

positions and velocities of cars were assigned randomly. WEo(v) =(2mv) %™ initial velocity distribution.

considered linearPy(v)=2%v (0<v<3/2), exponential

. — —1/24—v/2 ; iotribi -
5 ggl;) Wﬁi ch’ ?gﬂgg(g% d (t27lv1) 0_81/2 fovretlﬁgtsymd;ls;ngg_ peaks correspond to the fluctuating size of the infinite clus-
' P p= ter, while the power-law tail describes the regular part of

ics. All th h istributi h h - -
miﬁ);og;am totoﬁze three distributions have the average Ver. The apparent exponentof the power-law regiorP,

; ~m~ " slightly varies for different passing rates aRg(v),
In Fig. 1, we plot Ifim*2P,.] vs m for the above three ' S . . : )
e _ . though it remains confined between 3/2 and 2. It is definitely
velocity Fhstrlbutlons. We take=1 V‘_’h'Ch’ 6,1__5 we concluded different form the value 5/2, predicted by the Maxwell model
before, lies above the phase transition porgt We expect (1) The measured values ofwould make the total amount
the system to be in the disordered phase Withbeing ex-

_ of cars in the system divergenimP,,—«, so the power-
pressed by Eq.(11). For the exponential andPo(v)  |ay region ends with an exponential cutoff at large

=(2mv) Y%~ intrinsic velocity distributions, there is @ \we now comment on the relationship of our model to
good agreement with the prediction of the Maxwell modelg,jier work. Phenomenologically, it has certain resemblance
(12); for the linear velocity distribution, there are some de-y, clogging of granular flow in narrow pipesee, for ex-
viations for smallm, but for largem the agreement is satis- ample, Ref[19]). On the level of the mean-field description
factory. The slopes of the plots decrease withTaking into  f cjystering, our model is similar to the models of Refs.
account that at the point of the phase tr~ansiti0n the slopﬁlﬁ,lﬂ_ On the level of a microscopic definition of the pro-
equals to zero, this qualitatively confirms thatgets smaller  cess, our model reminds us of an asymmetric conserved-
when u decreases. mass aggregation mod&SCMAM) [17] where clusters un-
Plots of P, vs m for intrinsic velocity distributions dergo asymmetric diffusion, aggregation upon contact, and
Po(v)=e"? andPy(v)=(27v) Y% 2 with passing rate chipping (single-particle dissociationOf course, our model
v=0.005 well below the phase transition point, are shown iris continuum while the ASCMAM is the lattice model. More
Figs. 2a) and 2b), respectively. The cluster size distribution substantial difference between the two models lies in the
clearly consists of two regions: almost power-law tail for nature of randomness — in our model intrinsic velocities are

smallerm and several separate peaks for larger These
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guenched random variables, while in the ASCMAM dynam-design a more accurate theoretical approach which would
ics is the only source of randomness. Nevertheless, the phallow us to probe the characteristics of the low passing rate
nomenology of the two models appears to be quite similar. Imegime analytically. Some properties of the jammed state ap-
particular, the ASCMAM undergoes a phase transition, angbear similar to the properties of the jammed state of a lattice
in the jammed phase, the cluster size distribution exhibits anodel of Ref[17] which includes an asymmetric lattice dif-
power law decay with the exponent close to27]. We  fusion, aggregation, and fragmentation. It would be interest-
should stress that in the jammed phase, we have not reachédy to gain a deeper understanding of the relationship be-
a scale-free critical state which must have the exponent tween these models, and whether the quenched disorder is
=2. Maybe quenched randomness does not allow the systethe main source of difference.

to organize itself into a truly normalizable critical state. Finally we would like to say a few words about the rel-
Other possible explanation relies on large fluctuations in disevance of our findings to everyday traffic flow. The stipula-
ordered systems, i.e., our system was not large enough t®n that the only car allowed to pass is the one immediately

ensure self-averaging. following the leading car indeed makes our model quite re-
alistic. We could hardly recall seeing successful simulta-
IV. CONCLUSION neous passing events taking place within one dense cluster;

) ) ) ~ similarly, a driver would seldom risk overtaking more than a

In this paper, we have investigated the model of trafficfey cars at once. In fact, our passing rule could be consid-
that involves clustering and passing of the next-to-leadingred as the main consequence of the finite length of cars.
car. Despite the fact that it is one of the simplébnot the  Other consequences of finite car size could be simply taken
simples} possible continuous model of one-lane traffic with jnto account by redefining car density, unless the traffic is so
passing, the model has rich kinetic behavior. Depending ofammed that the average distance between cars becomes
the passing rate the system organizes itself either into dis- comparable to their length, and any passing is impossible.
ordered phase where density of large clusters is exponerrhe occurrence of phase transition and formation of infinite
tially suppressed, or into the jammed phase, where the clugjuster correspond to a rather common real driving scenario:
ter size distribution becomes independent pnand the after sitting for a while in a big cluster and finally overtaking
infinite cluster is formed. Within the framework of Maxwell its slow leader, one often drives rather unobstructed, since all
approach, which plays the role of the mean-field theory inthe “excessive” cars are trapped in the big cluster left be-
the present context, we have shown that the model admits a{lnd. Besides traffic flow, our model may also be relevant to
analytical solution. We have argued that the Maxwell ap-gther systems like pedestrian motion, where multiple agents
proach correctly predicts the existence of the phase transitiomove with intrinsic velocities and can not instantaneously
and adequately describes the properties of the disorderegiertake the slower ones.
phase which arises when the passing rate is high. For the
jammed phase, the Maxwell approach correctly predicts that
the system stores excessive cars in the infinite cluster and ACKNOWLEDGMENTS
organizes itself into some kind of a critical state. However,
the Maxwell approach cannot quantitatively describe other We are thankful to E. Ben-Naim and S. Redner for dis-
properties of the jammed phase. It would be interesting t@ussions and to NSF and ARO for support of this work.
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